A Hybrid Framework Using SOM and Fuzzy Theory for Textual Classification in Data Mining
نویسنده
چکیده
This paper presents a hybrid framework combining self-organising map (SOM) and fuzzy theory for textual classification. Clustering using selforganizing maps is applied to produce multiple targets. In this paper, we propose that an amalgamation of SOM and association rule theory may hold the key to a more generic solution, less reliant on initial supervision and redundant user interaction. The results of clustering stem words from text documents could be utilised to derive association rules which designate the applicability of documents to the user. A four stage process is consequently detailed, demonstrating a generic example of how a graphical derivation of associations may be derived from a repository of text documents, or even a set of synopses of many such repositories. This research demonstrates the feasibility of applying such processes for data mining and knowledge discovery.
منابع مشابه
Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملImprovement of coal mine roof rating classification using fuzzy type-2
One of the main concerns of an underground coal mining engineer is the safety and stability of the mine. One way that the safety and stability can be ensured is to know and understand the coal mine geology and how it reacts to the mining process. One technique that has shown a lot of success in the coal mining industry for geologic technical evaluation purposes is the coal mine roof rating (CMR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003